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1 Statement of the fundamental theorem

We consider a linear differential operator of order r

L : Γ(E) → Γ(F ),

where E,F are vector bundles over a manifold M . (These can be real or complex
vector bundles, we usually suppose complex.) Thus in local co-ordinates on M
and local trivialisations of the bundles the operator is given by

Lf =
∑

|I|≤r

aI

(
∂

∂x

)I

f, (1)

where f and Lf are vector valued functions of x, the sum runs over multi-
indices I and aI is a matrix-valued function of x. We want to consider solving
the partial differential equation Lf = ρ for f , where ρ is given.

We usually suppose that E and F have metrics (Euclidean or Hermitian)
and that M has a volume form. Then we have L2 inner products on sections,
in the standard way. There is an adjoint operator

L∗ : Γ(F ) → Γ(E),

characterised by the identity

〈Lf, σ〉 = 〈f, L∗σ〉 (2)

when at least one of f, σ has compact support. The metric structure is often
not essential and one can work with a “transpose” operator

LT : Γ(F ∗ ⊗ Λ) → Γ(E∗ ⊗ Λ),

where Λ is the real line bundle of volume forms. But it will usually be more
convenient for us to fix metric structures.

If M is compact then it is immediate that any σ with L∗σ = 0 is orthogonal
to the image of L. The “fundamental theorem” gives the converse, in the case
of elliptic operators L (a condition we define below).

Theorem 1 Let L be an elliptic operator over a compact manifold. Then
kerL, kerL∗ are finite dimensional and we can solve the equation Lf = ρ if
any only if ρ ⊥ kerL∗.
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Thus there are just a finite number of conditions on ρ for a solution to our
equation to exist and the solution is unique up to a finite-dimensional ambiguity.

Example Let (M, g) be a Riemannian manifold. The derivative is a dif-
ferential operator ∇ : Γ(R) → Γ(T ∗M) and the Laplace operator on functions
Δg is ∇∗∇. This is a prototype elliptic operator. From the definition we get
Δ∗ = Δ. If M is compact and connected and Δf = 0 then

‖∇f‖2 = 〈Δf, f〉 = 0,

so f is a constant. In this case the theorem says that we can solve the equation
Δf = ρ if and only if the integral of ρ is zero and the solution is unique up to
the addition of a constant.

We now recall the definition of the elliptic condition. This involves the notion
of the symbol of a differential operator. For a point p ∈ M and cotangent vector
ξ ∈ T ∗Mp the symbol σξ is a linear map

σξ : Ep → Fp.

In local co-ordinates, as in (1),

σξ =
∑

|I|=r

aIξ
I .

Note that the sum runs only over the highest order terms. To explain the

notation: a monomial
(

∂
∂x

)I
is considered as an element of the symmetric power

sr(TM) and then these are regarded as polynomial functions on the dual space
T ∗M . To give a co-ordinate-free definition, choose a function φ on M with
φ(p) = 0 and dφ(p) = ξ. Then

L(φrf)(p) = σξ.f(p).

The significance of the symbol appears when one considers rescaling. Take
local co-ordinates x centred at p and let x = εx̃, then work in x̃-coordinates
over a ball |x̃| < 1 say. Thus

(
∂

∂x

)I

= ε−|I|

(
∂

∂x̃

)I

.

For the “rescaled” operator Lε

εrLε =




∑

|I|=r

aI(εx̃)

(
∂

∂x̃

)I


+ ε




∑

|I|=r−1



+ ε2 . . . (3)
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As ε → 0 there are two effects. One is that the terms involving derivatives of
order less than r are suppressed. The other is that the co-efficients of the order
r term converge to the fixed value at x̃ = 0 i.e. the point p. In other words, the
differential operators L̃ε = εrLε converge to the constant co-efficient operator
defined by the symbol of L at p.

This rescaling idea is similar to that in Riemannian geometry, where rescal-
ings of a Riemannian metric around a point converge to the Euclidean metric
on the tangent space at that point.

• The symbol of the adjoint L∗ is (−1)r times the adjoint of the symbol of
L. Thus L∗ is elliptic if and only if L is.

• The symbol of the Laplace operator is σξ = −|ξ|2.

Definition 1 The operator L is elliptic is σξ : Ep → Fp is an isomorphism for
all non-zero ξ.

Note that the existence of an elliptic operator implies that the bundles E,F
have the same rank.

Example
Let L0 be a constant-coefficient operator on Rn, of pure order r. So the aI

are constant matrices, defined for |I| = r. We have

L0(e
iξx) = ir

∑

I

aIξ
Ieiξx (4)

Now consider vector-valued functions over the torus Tn = Rn/(2πZ)n.
These can be represented by Fourier series

f(x) =
∑

ν∈Zn

fνeiνx.

Recall a basic result from Fourier theory, that the smooth functions on the torus
correspond to “rapidly decreasing” systems of co-efficients (fν) , i.e. |fν | =
o(|ν|k) for all k.

Acting on functions on the torus

L0f = ir
∑

ν

σν(fν)eiνx.

If L0 is elliptic then for ν 6= 0 we have σν(fν) = 0 if and only if fν = 0. Also
for any ρν

σ−1
ν (ρν)| ≤ C|ν|−r|ρν |.
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It follows that kerL0 consists of the constants and the image of L0 con-
sists of the smooth vector valued functions with integral 0. This confirms the
fundamental theorem in this situation.

A variant of the above is to fix some α ∈ (Rn)∗, not in the integer lattice.
This defines a flat complex line Λα over Tn whose sections are given by series

f =
∑

ν∈Zn

fνei(ν+α)x.

More generally we consider sections of the tensor product of Λα with trivial
vector bundles. Then

L0f = ir
∑

ν∈Zn

σν+α(fν)eiνα,

and σν+α is invertible for all ν. So in this setting the kernel and cokernel of L0

are zero.

2 Proof of the fundamental theorem

There are a various possible approaches. The approach we take follows the
strategy:

• Solve Lf = ρ locally by perturbation from the constant co-efficient case.

• Patch a finite number of local solutions to get a global solution “modulo
compact error”

• Obtain global “weak solutions” and then establish elliptic regularity.

2.1 Sobolev spaces

While we are ultimately interested in smooth solutions we need to go through
Banach spaces, for example to apply the well-known

(1 + T )−1 = 1 − T + T 2 − . . . , (5)

for an operator with operator norm ‖T‖ < 1.
We use Sobolev spaces. For a bundle E over a compact manifold M and for

integers k ≥ 0, we define L2
k(M ; E) to be the completion of the C∞ sections in

the norm

‖f‖2
L2

k
=
∑

l≤k

∫

M

|∇lf |2.

Here the lth. order derivative ∇lf can be defined using suitable connections, and
any choices give equivalent norms. Alternatively, use a partition of unity and
use the ordinary derivatives of vector valued functions on Rn: that approach
also gives equivalent norms.
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If D is a linear differential operator and σ ∈ L2 we define a weak solution to
the equation Df = σ to be an L2 section f such that for all smooth χ:

〈D∗χ, f〉 = 〈σ, χ〉 (6)

(If we work on a non-compact manifold we also assume that χ has compact
support). In particular we can apply this to the operator ∇l. An equivalent
definition of L2

k(M ; E) is to say that it consists of L2 sections with k weak
derivatives in L2. However we do not need to use this fact.

There are two basic results about these Sobolev spaces.

Proposition 1 (Rellich) The inclusion L2
k → L2

k−1 is compact.

Proposition 2 (Sobolev embedding) For k > dimM/2 there is a continuous
embedding L2

k → C0.

To prove these we use our standard operating technique which is to multiply
sections by a partition of unity, then transplant to the torus Tn. Using this we
reduce to the case M = Tn. The L2

k norm is then equivalent to a norm written
in terms of Fourier co-efficients (fν)

‖f‖2
k =

∑

ν

|fν |
2(1 + |ν|2)k. (7)

When k = 0 this is the usual correspondence with the space l2 of square-
summable arrays (fν).

For Proposition 1, we just discuss the case L2
1 → L2. In fact if w(ν) is

any positive weight function with |w(ν)| → ∞ as |ν| → ∞ and we take the
completion l2w in the norm

‖(fν)‖2
w =

∑
w(ν)|fν |

2,

then the inclusion l2w → l2 is compact. For suppose that (fν)(i) is a sequence
which is bounded in l2w norm. Then for each ν the f

(i)
ν are bounded. Taking

a subsequence, using a diagonal argument, we can suppose that f
(i)
ν → gν as

i → ∞. The assumption on the weight function w means that for any ε we can
find R such that for all i

∑

|ν|>R

|f (i)
ν − gν |

2 < ε.

Using the fact that there are only a finite number of lattice points ν with |ν| ≤ R
one shows easily that (gν) is the limit of (fν)(i) in l2 norm.

For Proposition 2 the essential point is that the L2
k norm on the torus should

control the C0 norm. This follows from Cauchy-Schwartz:

‖f‖2
C0 ≤

(∑
|fν |)

)2

≤
∑

|fν |
2(1 + |ν|2)k

∑
(1 + |ν|2)−k
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and if k > n/2 the last term is finite by comparison with the integral
∫ ∞

r=0

rn−1(1 + r2)−kdr.

By differentiation, we deduce from Proposition 2 that L2
k → Cs if k > n/2+s

so ⋂

k>0

L2
k = C∞.

Clearly our operator L of order r over M extends to a continuous map

L : L2
r → L2.

Recall from functional analysis that if K : L2 → L2 is a compact linear
operator then the image of 1 + K is a closed subspace of finite codimension.
We say that P : L2 → L2

r is a (right) parametrix for L if LP = 1 + K with
K : L2 → L2 compact. If we have such a P then:

•
Im(L : L2

r → L2)

contains Im(1 + K) so is also closed and of finite codimension.

• Since the image is closed we have L2 = ImL ⊕ (ImL)⊥.

• From the definition, ImL⊥ is the set of weak solutions σ of L∗σ = 0.

• So for ρ ∈ L2 we can solve the equation Lf = ρ with f ∈ L2
k if and only

if ρ is orthogonal to the weak solutions of the equation L∗σ = 0.

Thus a proof of the fundamental theorem follows if we show:

1. Every elliptic operator over a compact manifold admits a parametrix;

2. A weak solution of L∗σ = 0 is smooth and if f ∈ L2
r with Lf smooth then

f is smooth.

(The fact that kerL is finite dimensional follows from the above discussion
by interchanging L,L∗.)

2.2 Construction of a parametrix

We first develop properties of a constant co-efficient operator L0 of pure order
r. For ρ supported in the unit ball in Rn (say) we want to solve the equation
L0f = ρ over a slightly larger ball, with estimates on the solution. This can be
done in various ways.
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• Fourier transform. We have

f̂(ξ) = (2π)−n/2

∫

Rn

f(x)e−iξxdx,

and the operator L0 goes over under the transform to multiplication by
irσ(ξ). So a solution f is the inverse FT of

(−i)rσ−1
ξ (ρ̂(ξ)).

This needs some Fourier theory to carry through, for example to deal with
the potential singularity at ξ = 0.

• Integral operators

The solution can be written as convolution with a Greens function G:

f(x) =
∫

Rn

G(x − y)ρ(y)dy.

The function G is homogeneous of degree r − n provided that r 6= n. For
example the Laplacian on Rn with n > 2 leads to the Newton kernel

G(z) = C|z|2−n.

This description has advantages when one studies other function spaces
(see Section 4.1 below), but also needs some theory.

• “Shifted” Fourier series This is more elementary and is the approach we
take in what follows in this section.

To proceed, we consider a constant coefficient elliptic operator of pure order
r over the torus:

L0 : Γ(CN ⊗ Λα) → Γ(CN ⊗ Λα).

We have

Proposition 3 For each k, L0 defines an isomorphism of Banach spaces

L0 : L2
k+r → L2

k.

This clear from the Fourier series description because we can find an m > 1
such for any fν we have

m−1(1 + |ν|2)r|fν |
2 ≤ |σν+α(fν)|2 ≤ m(1 + |ν|2)r|fν |

2.

For the moment we take k = 0 above. We have

Proposition 4 If L̃ is a sufficiently small perturbation of L0 then L̃ also defines
an isomorphism from L2

r to L2.
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Here “sufficiently small perturbation” means in the obvious sense: if L̃ =
L0 + η the coefficients of the differential operator η are sufficiently small in
Crnorm. If L−1

0 is the inverse of L0 then we require that the L2 → L2 operator
norm of η ◦ L−1

0 is less than 1 and we have

L̃−1 = L−1
0 (1 + ηL−1

0 )−1,

using (5).

To construct a parametrix we choose a partition of unity 1 =
∑

a χa on M ,
where the χa are supported in small balls Ba ⊂ M . Choose cut-off functions χ̃a

supported in slightly larger balls B̃a and with χ̃a = 1 on the support of χa. We
rescale B̃a to unit size and embed it in the standard torus Tn. Write B̃∗

a ⊂ Tn for
this ball in Tn. Rescaling the operator L over B̃a, as in the beginning of Section
1, we get an operator L̃a over B̃∗

a which is very close to a constant coefficient
operator L0. The flat line bundle Λα is trivial over B̃∗

a. Using a suitable cut-off
function we can extend L̃a to an operator over Tn, acting on sections of twisted
flat bundles as above, still close to the constant coefficent operator. (Here we
should suppose that a slightly larger ball than B̃∗

a is embedded in Tn.) Then
we can suppose, by choosing our balls in M sufficiently small, that L̃a satisfies
the hypotheses of Proposition 4 and is invertible from L2

r to L2. Let Qa be the
inverse. We define

Pρ =
∑

χ̃aQa(χaρ) (8)

To simplify notation in this equation we have identified sections over B̃∗
a and

B̃a in an obvious fashion.
For simplicity, suppose that r = 1 (the general case is essentially the same).

Then
LPρ =

∑

a

χ̃a(LQaχaρ)) +
∑

a

(∇χ̃a) ∗ (Qaχaρ) ,

where ∗ denotes some bilinear algebraic expression. By construction LQaχaρ =
χaρ and χ̃aχaρ = χaρ. Since

∑
a χa = 1 we get LPρ = ρ + Kρ where

Kρ =
∑

a

(∇χ̃a) ∗ (Qaχaρ) . (9)

Now Qa is a bounded map L2 → L2
1 and all the other ingredients in (9) are

given by by multiplication by fixed smooth tensors, so K is a bounded map
K : L2 → L2

1, hence K : L2 → L2 is compact by the Rellich Lemma.

The final step in our proof of the fundamental theorem is elliptic regularity.

Proposition 5 Suppose that L is an elliptic operator of order r over a compact
manifold M and that f ∈ L2 is a weak solution of the equation Lf = ρ. If ρ is
in L2

k then f is in L2
k+r. In particular, if ρ ∈ C∞ then f ∈ C∞.

This is closely related to the existence of elliptic estimates:
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Proposition 6 With L as above, for each k there is a constant Ck such that
for all f ∈ Γ(E)

‖f‖L2
k+r

≤ Ck

(
‖Lf‖L2

k
+ ‖f‖L2

)
. (10)

.

In our approach to the proof of the fundamental theorem we do not use
Proposition 6 explicitly, but it is an important fact so we digress to discuss it.

• One way to prove elliptic regularity is to first establish the elliptic estimate
and then use a smoothing argument.

• The elliptic estimate (10) can be proved by our standard procedure, using
cut-off functions and transplanting to the torus where we use Fourier se-
ries. But in particular cases there are more direct approaches which may
give better results with more geometric information about the constants
Ck. For example, for compactly supported functions f on Rn, integration-
by-parts shows that

∫

Rn

(Δf)2 =
∫

Rn

|∇∇f |2.

The argument involves interchanging derivatives. On a compact Rieman-
nian manifold (M, g) we have

∫

M

(Δgf)2 =
∫

M

|∇∇f |2 + Ricci(∇f,∇f).

Here ∇∇f is defined using the Levi-Civita connection.

We now fill in the proof of elliptic regularity (Proposition 5). Consider an
operator L̃ acting on non-trivial flat bundles over the torus as above, close
to a constant coefficient operator. We can suppose that L̃ : L2

1 → L2 and
L̃∗ : L2

1 → L2 are isomorphisms. Thus

• If ρ̃ is in L2 over Tn there exists an L2
1 solution f̃ of the equation L̃f̃ = ρ̃.

• Suppose that g̃ ∈ L2 is a weak solution of the equation L̃g̃ = 0. Then g is
orthogonal to the image of L̃∗; but this is the whole of L2 and so g̃ = 0.
It follows that f̃ in the first item is the unique weak L2 solution of the
equation f̃ = ρ̃.

Go back to our manifold M and f ∈ L2 a weak solution of Lf = ρ, for some
ρ ∈ L2. We first treat the case of a first order operator L. Take a partition
of unity χa as before, so f =

∑
fa with fa = χaf and we want to show that

fa ∈ L2
1. One can check that the formula

L(fa) = χaρ + (∇χa) ∗ fa,
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still holds in the weak sense. Now (∇χa) ∗ fa ∈ L2 so L(fa) = ρa say, with ρa ∈
L2. We can now transport the discussion to the torus following our standard
operating technique and, by the existence and uniqueness noted above, we see
that fa ∈ L2

1.
Thus we have shown that for a first order operator L, if Lf ∈ L2 then f ∈ L2

1.
The same argument shows that Lf ∈ L2

k implies that f ∈ L2
k+1, completing the

proof of Proposition for first order operators L. There is some significant further
complication for higher operators, say order r = 2. Then, following the same
pattern as above, we have

L(χaf) = χaLf + ∇χa ∗ ∇f + ∇∇χa ∗ f. (11)

The problem is that for f ∈ L2 the term in (11) involving ∇f is not necessarily
in L2. To get around this we can extend the definition of the Sobolev spaces L2

k

to negative integers k. On the torus, using the Fourier series description, this
can be done using the same formula (7). On a general manifold, elements of
L2

k for k < 0 can be defined as distributions. With the definitions in place, the
same argument works since we can achieve that, over the torus, L̃ : L2

1 → L2
−1 is

an isomorphism. Our first “bootstrapping” step is: L̃fa ∈ L2
−1 implies fa ∈ L2

1.

3 Example:Riemann surface theory

On C, writing z = x1 + ix2, we have a differential operator

∂

∂z
=

1
2

(
∂

∂x1
+ i

∂

∂x2

)

,

and solutions of ∂
∂z f = 0 are holomorphic functions. This is an elliptic operator

with symbol
σξ = ξ1 + iξ2.

If M is a Riemann surface we have an elliptic operator

∂ : Ω0 → Ω0,1

given in local holomorphic coordinates by ∂f = ( ∂
∂z f) dz. The “transpose” can

be identified with
∂ : Ω1,0 → Ω1,1.

and the kernel of this is the space H1,0 of holomorphic 1-forms, given in local
co-ordinates by s(z)dz where s is holomorphic. Our fundamental theorem tells
us that, if M is compact and ρ ∈ Ω0,1 we can solve the equation ∂f = ρ if and
only if ∫

M

ρ ∧ σ = 0

for all σ ∈ H1,0.
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Now let p ∈ M and a be a tangent vector of M at p. This is the data
required to specify the residue of a meromorphic function f with a pole at p;
that is, in local coordinates centered at p:

f(z) =
α

z
+ holomorphic , a = α

∂

∂z
.

Let χ be a cut-off function supported in such a co-ordinate chart, equal to 1
near p. Then

ρ = ∂(χ
α

z
) =

(
∂χ
) α

z

is a smooth (0, 1) form, supported in an annulus. A short calculation shows
that for a holomorphic 1 form σ = s(z)dz

∫

C

ρ ∧ σ = 2πiα s(0). (12)

Let p1, . . . pd be distinct points of M and ai ∈ TMpi . For each point we perform
the construction above to get an f0 on M which near each pi is meromorphic
with residue ai but with ∂f0 = ρ0 where ρ0 is smooth and supported in a union
of annuli. If u is a smooth function on M solving the equation ∂u = ρ0 then
f = f0 − u is a meromorphic function with residues ai. Conversely such an f
defines a solution u = f0 − f . Equation (12) implies that for σ ∈ H1,0

∫

M

ρ0 ∧ σ = 2πi
∑

i

〈σ(pi), ai〉,

where 〈 , 〉 is the dual pairing between T ∗M and TM . So we deduce that

Theorem 2 For compact M , there is a meromorphic function with at worst
simple poles at pi and residues ai if and only if

∑

i

〈σ(pi), ai〉 = 0

for all σ ∈ H1,0.

Of course, the meromorphic function is unique up to the addition of a constant.
We have an evaluation map

ev : H1,0 →
⊕

T ∗Mpi .

Let K be the kernel of the transposed map

evT :
⊕

TMpi
→ (H1,0)∗.

The theorem states that K is the set of residues of meromorphic functions.
Linear algebra gives

dim K = d − dim H1,0 + dim ker(ev). (13)

12



Write D for the divisor p1 + . . . + pd, write O(D) for the space of meromorphic
functions with at worst poles at the pi and write O(K−D) for the space of holo-
morphic 1-forms vanishing at all the pi. Also write g = dimH1,0. Then (adding
1 for the constants) the equation (13) becomes the Riemann-Roch formula:

dim O(D) = d + 1 − g + dim O(K − D). (14)

Using our fundamental theorem, it is straightforward to show that g is the
topological genus of M (defined as half the dimension of the first de Rham
cohomology). We leave this as an exercise.

4 Some more analysis

The function spaces L2
k and their associated norms are not adequate for many

applications of elliptic theory, particularly to nonlinear problems. In this section
we discuss some topics involving Hölder and Lp spaces.

4.1 The Schauder estimates

For 0 < α < 1 the C ,α seminorm on functions on a metric space is

[f ],α = supx 6=y

|f(x) − f(y)|
d(x, y)α

.

On a compact manifold M we define the C ,α norm by adding ‖f‖L∞ . In a
straightforward fashion we define the Ck,α norm on sections of a vector bundle
over M , taking the C ,α norm of the first k derivatives. As for the L2

k norms
there are many ways of doing this, all of which give equivalent norms. The
general Schauder estimate for an elliptic operator of order r over M is similar
in shape to (10):

‖f‖Ck+r,α ≤ Ck (‖Lf‖Cr,α + ‖f‖L2) (15)

In the familiar way this can be deduced from similar results about constant
co-efficient operators. For simplicity we consider the Laplace operator on Rn

for n > 2; the general case is similar. For smooth ρ of compact support in Rn

there is a unique solution f = Gρ to the equation Δf = ρ with f → 0 at ∞.
The operator G is given by the Newton formula:

(Gρ)(x) = c

∫

Rn

ρ(y)
|x − y|n−2

dy (16)

The basic estimate is

Theorem 3 There is a constant C such that for all such ρ

[∇2Gρ],α ≤ C[ρ],α.
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Let Tij be the operator ∂2

∂xi∂xj
G. If we formally differentiate (16) we get

Tij(ρ)(x) =
∫

Rn

Kij(x − y)ρ(y)dy (17)

where Kij is the relevant second derivative of c|x − y|2−n with respect to x.
There are two problems with (17):

Problem 1
Kij(x) is O(|x|−n) as z → 0 so the right hand side of (17) is not defined

as a Lebesgue integral. To get round this we interpret the RHS as a singular
integral. We have

Kij(x) = c
nxizj − δijr

2

rn+2

which is homogeneous of degree −n. So in generalised polar co-ordinates (r, θ)
with θ ∈ Sn−1 we can write

Kij = κij(θ)r
−n.

It is clear from the formula above that
∫

Sn−1

κij(θ)dθ = 0.

It is a simple exercise to see that for smooth ρ this means that the limit

lim
δ→0

∫

|x−y|>δ

Kij(x − y)ρ(y)dy.

exists, and this is taken as the definition of the singular integral. More generally
if we have any smooth function κ on Sn−1 of integral zero we can consider the
operator Tκ defined by a singular integral of the form above with K = r−nκ.
The prototype is the Hilbert transform when n = 1

Hρ(x) = π−1

∫ ∞

−∞

ρ(y)
x − y

dy.

This acts in a very simple way on Fourier tranforms

Ĥρ(ξ) = isgn(ξ)ρ̂(ξ).

Problem 2
The second problem is that with this interpretation of the RHS of (17)

the formula is not true in general. In fact it is not true when i = j. To see
this observe that

∑
i Kii = 0 since cr2−n is the “fundamental solution” of the

Laplace equation, but ∑

i

Tii(ρ) = ΔGρ = ρ.

However if aij is a matrix of trace zero and we put T =
∑

aijTij and K =∑
aijKij it is true that
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Tρ(x) =
∫

Rn

K(x − y)ρ(y)dy. (18)

To prove Theorem 3 it suffices to consider such combinations of derivatives
(since we already know that ΔGρ = ρ). The proof of (18) involves the same
procedure as the usual proof of the Newton formula (16).

We have to prove that
[Tρ],α ≤ C[ρ],α (19)

for a singular integral operator T as above. A crucial property of T is scale
invariance. For λ > 0 and a function f on Rn set fλ(x) = f(λ−1x). Then we
have

(Tρ)λ = T (ρλ).

First preliminary
It suffices to prove (19) for functions ρ with ρ(0) = 0. To see this choose

some χ with [χ],α, [Tχ],α ≤ A say and χ(0) = 1. Given any ρ set R = ρ(0) and
σ = Rχ,λ. We have

[χλ],α = λ−α[χ],α ≤ Aλ−α

and
[Tχλ],α = λ−α[Tχ],α ≤ Aλ−α

Now ρ̃ = ρ − σ vanishes at 0. Suppose we know that (19) holds for functions
vanishing at 0, then

[Tρ],α ≤ [T ρ̃],α + RAλ−α ≤ C[ρ],α + (1 + C)RAλ−α,

and letting λ → ∞ we deduce [Tρ],α ≤ C[ρ],α.

Second preliminary
Let x0 be some fixed unit vector in Rn. It suffices to show the existence of

a C such that for all ρ with ρ(0) = 0 and [ρ],α ≤ 1 we have

|Tρ(x0) − Tρ(0)| ≤ C. (20)

This follows from the scale, translation and rotation invariance of the problem
and the first preliminary.

To prove (20) we divide the integration region into four parts:

• I = {|y| > 10};

• II = {|y| < 1/10};

• III = {|y − x0| < 1/10};

• IV , the complement of the small balls II, III in {|y| < 10}.
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We have to bound

|
∫

I∪II∪III∪IV

ρ(y)K(−y)dy −
∫

I∪II∪III∪IV

ρ(y)K(x0 − y)dy|. (21)

For region I we take the two terms together with the bound
∫

I

|ρ(y)||K(−y) − K(x0 − y)|dy.

Use the facts that for |y| > 10 we have

|K(−y) − K(x0 − y)| ≤ const. |y|−n−1,

and that |ρ(y)| ≤ |y|α since ρ(0) = 0 and [ρ],α ≤ 1. We get our bound by
comparison with ∫ ∞

10

rα−2dr.

For the intermediate region IV all the terms are bounded and IV has finite
volume so the estimate is obvious.

For the region II: the second integral in (21) is harmless. For the first
integral we have |ρ(y)| ≤ |y|α and K(−y) ≤ |y|−n and we get a bound by
comparison with

∫ 1/10

0

rα−1dr.

Region III is similar to region II except that we do not assume ρ(x0) = 0.
However if ρ is constant over III then the integral vanishes since the integral
of K over spheres centred at the origin is zero. Writing ρ = ρ̃ + ρ(x0) over III
we can apply the same argument as for II.

4.2 Application of Lp norms

For p > 1 the Lp norm of a function on a measure space is

‖f‖Lp =

(∫
|f |p

)1/p

.

Hölder’s inequality is ∫
fg ≤ ‖f‖Lp‖g‖Lq

when p−1 + q−1 = 1. If the space has finite volume then the Lp norms are of
increasing strength as p increases and

limp→∞‖f‖Lp = ‖f‖L∞

There is a relatively sophisticated Calderon-Zygmund theory of elliptic operators
on Lp spaces which we do not have time to go into in this course, but we discuss
some simpler topics.
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The Sobolev embedding theorem states that for compactly supported func-
tions on Rn:

‖f‖Lp ≤ Cn,q‖∇f‖Lq (22)

when −n/p = 1 − n/q. The basic case is q = 1 when the result is equivalent to
the isoperimetric inequality

Vol(Ω)n−1/n ≤ Cn,1Area(∂Ω).

To see the equivalence in one direction, take functions f which are smoothings
of the characteristic function of Ω.

The inequality (22) for general q can be deduced from the case q = 1 (with
a non-optimal constant). For example take n = 4. Applying (22) with q = 1 to
f3 we get

(
∫

f4)3/4 = (
∫

(f3)4/3)3/4 ≤ C4,1

∫
|∇f3|.

Now ∇f3 = 3f2∇f and so by Cauchy-Schwartz:

(
∫

f4)3/4 ≤ 3C4,1(
∫

f4)1/2(
∫

|∇f |2)1/2,

which gives

(
∫

f4)1/4 ≤ 3C4,1(
∫

|∇f |2)1/2,

which is (22) with q = 2.

We get similar inequalities on a general compact Riemannian n-manifold
(M, g). For simplicity take n = 4 where we get an inequality

‖f‖L4 ≤ Cg‖∇f‖L2 + ‖f‖L2 (23)

The best constant Cg is an important invariant of (M, g). The proof of (23) for
some constant follows easily from the Euclidean case. To illustrate the use of
these ideas we prove:

Theorem 4 Let (M, g0) be a compact Riemannian 4-manifold, m > 1 and
q > 2. There is a constant K depending on g0,m, q such that if g is any metric
on M with m−1g0 ≤ g ≤ mg0 and any function f on M :

‖f‖L∞ ≤ K (‖Δgf‖Lq + ‖f‖L2) . (24)

This is interesting even for the fixed metric g0. We know that the L2 norm of
Δf essentially controls the L2

2 norm of f . We know that L2
2 → L∞ in dimensions

n < 4 but this just fails when n = 4. The result says that if we take a slightly
stronger Lq norm of Δf we do get an L∞ bound on f . The main interest of
Theorem 4 however is that the result holds for any metrics g under the weak
hypothesis that it is uniformly equivalent to the reference metric g0. There is no
assumption on the smoothness or modulus of continuity of g. This means that it
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is impossible to prove such a result using our standard operating technique from
Section 2 of approximating by constant co-efficient operators. Going further, one
can consider “metrics” g that are not smooth, or even continuous, and develop
some parts of elliptic theory for the Laplace operators of these. Similar remarks
apply to certain other differential operators with non-smooth coefficients.

The proof of Theorem 4 is a simple example of the Moser iteration technique.
A key point is that the Lp norms of f and ∇f computed using the metrics g
and g0 are equivalent up to a bounded factor depending on m, so in (23) we can
take Cg ≤ C say.

In what follows we write ‖ ‖p for the Lp norm. To simplify the writing,
without making any essential difference, we assume that

• f > 0;

• ‖f‖2 = 1;

• Vol(M, g) = 1;

• ‖Δgf‖q = 1.

The second and third items imply that if p′ ≥ p ≥ 2 and γ′ ≥ γ > 1 then

‖f‖γ′

p′ ≥ ‖f‖γ
p . (25)

Let r = q/q − 1 be the conjugate index to q so r < 2.
For α > 1

|
∫

M

fαΔgf | ≤ ‖fα‖r‖Δf‖q = ‖fα‖r = ‖f‖α
αr

By the definition of Δg we get
∫

M

fαΔgf =
∫

M

∇(fα).∇f.

We have

(∇fα).∇f =
4α

(α + 1)2
|∇f (α+1)/2|2.

So by the Sobolev inequality (23) we get a bound on the L4 norm of f (α+1)/2

in terms of “lower” Lp norms. After some manipulation using (25) and the
inequality 4α

(α+1)2 > α−1 we get

‖f‖2α ≤ (2Cα)1/α+1‖f‖rα. (26)

Set k = 2/r, so k > 1, and for i ≥ 0 take αi = ki+1. Thus rαi = 2ki and
2αi = 2ki+1. Let λi = log ‖f‖2αi so (26) becomes:

λi+1 ≤ λi +
1

ki+1 + 1
(log(2C) + i log k) .
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Since
∞∑

i=0

1
ki+1 + 1

(log(2C) + i log k) < ∞,

this gives a bound on ‖f‖∞ = limi→∞ exp λi.

5 Rudiments of index theory

5.1 The Fredholm index

A bounded linear map T : H1 → H2 between Banach spaces is called Fredholm if
kerT, cokerT are finite dimensional and ImT is closed. The index of T is defined
to be

ind T = dim kerT − dim cokerT. (27)

If H1, H2 are finite dimensional then ind T = dim H1 − dim H2. In general
one can think of the index as giving a meaning to the difference of two infinite
dimensions.

Proposition 7 If T is Fredholm as above and τ : H1 → H2 has sufficiently
small operator norm then T + τ is Fredholm and ind (T + τ) = ind T .

To see this, consider first the case when T is surjective. We can choose a
closed complementary subspaces H1 = H ′

1 ⊕ kerT and then the restriction of T
is an isomorphism from H ′

1 to H2. Without loss of generality we can suppose
that H1 = H2 ⊕ kerT and T has components (1H2 , 0). Let τ have components
(τ1, τ2) so

(T + τ)(h, v) = (1 + τ1)h + τ2v.

If ‖τ1‖ < 1 then (1+ τ1) is an isomorphism so T + τ is surjective and the kernel
is given by pairs (h, v) with

h = −(1 + τ1)
−1τ2v.

This gives an isomorphism from ker T to ker (T + τ) and shows that the indices
are equal.

For the general case, choose a map λ : CN → H2 which generates cokerT .
Then the map T ⊕ λ : H1 ⊕CN → H2 is surjective. We have an exact sequence

0 → kerT → Ker (T ⊕ λ) → CN → cokerT → 0. (28)

This shows
ind (T ⊕ λ) = ind T + N. (29)

We apply the previous discussion to T ⊕ λ and (T + τ) ⊕ λ to establish the
proposition.

An elliptic operator L over a compact manifold, acting on suitable Sobolev
spaces is Fredholm and the index ind L is independent of the choice of Sobolev
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spaces. It follows from Proposition * that the index is preserved by continuous
deformations through elliptic operators.

Example Rephrasing the discussion of Section 3, a divisor D = p1 + . . . pd

on a Riemann surface M defines a holomorphic line bundle L = LD over M .
The holomorphic structure is encoded in an elliptic operator

∂L : Ω0(L) → Ω0,1(L).

The kernel is the space OD considered in Section 3 and the cokerenl H1(L) is
the dual of O(K − D). The Riemann-Roch formula is

ind ∂L = d + 1 − g

which is a topological invariant of (L,M). The dimensions of the kernel and
cokernel can change, as the points pi are varied continuously on M .

More generally, for any holomorphic line bundle L → M the space H1(L) is
dual to the holomorphic sections H0(K ⊗L∗) where K = T ∗M is the canonical
line bundle.

5.2 The index of a family

Let S be a compact, connected, space and Ts : H1 → H2 a family of Fredholm
operators parametrised by S. It might happen that the kernels and cokernels
of the Ts have fixed dimensions and vary continuously with s, thus giving a
pair of bundles over S, but in general the dimensions of these spaces can jump.
However we can define an index of the family as a virtual bundle over S.

Recall that for compact X the abelian group K(X) is the Grothendieck
group associated to the semi-group of isomorphism classes of complex vector
bundles over S, under direct sum. Thus elements of K(X) can be written as
formal differences E − F and an exact sequence

0 → E0 → E1 . . . → EN → 0

gives a relation
∑

(−1)iEi = 0 in K(X). Tensor product makes K(X) a com-
mutative ring.

To define the index of the family Ts we choose, using the compactness of S,
a map λ : CN → H2 which generates the cokernel of every Ts. Then we have
seen that the kernels of Ts⊕λ have fixed dimension and the proof of Proposition
7 shows that they vary continuously with s, forming a vector bundle over S.
We define the index of the family indTs ∈ K(S) by

indTs = ker (Ts ⊕ λ) − CN .

In the case when kerTs, cokerTs are bundles the exact sequence (28) shows that
ind Ts = ker Ts − coker Ts. In general is a simple exercise to show that ind Ts is
independent of the choice of λ. (Consider λ, λ′ and compare each with λ ⊕ λ′.)
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In the case of families of elliptic operators one usually takes S to be a mani-
fold. We consider a fibre bundle M → S with fibre M , vector bundle E ,F → M
and a family of elliptic operators Ls mapping between sections of E ,F restricted
to the fibres. In such a situation the operators Ls do not, at least in a natural
fashion, act on fixed Banach spaces but the theory extends in a straightforward
way and we get an index of the family in K(S).

5.3 Bott periodicity

There is a triangle of relations between:

1. Index theory;

2. Vector bundles and K-theory;

3. The topology of the unitary groups U(N).

First recall another point of view on K-theory. We have K(pt) = Z, induced by
the rank of bundles, and there is a natural splitting K(X) = Z ⊕ K̃(X). The
“reduced” group K̃ can also be defined as stable equivalence classes of bundles,
under the relation generated by E ∼ E⊕C. Now consider the sphere Sn. Rank
r complex vector bundles correspond to homotopy classes of maps Sn−1 → U(r)
and so K̃(Sn) can be identified with πn−1(U) where U is the infinite unitary
group (or πn−1(U(N) for N >> n). The fundamental result in the area is Bott
periodicity which asserts that

π2m−1(U) = Z , π2m(U) = 0. (30)

More precisely, Bott defined a map B : πi(U) → πi+2(U) and showed that
it is an isomorphism. Then (30) follows from the simple facts that π0(U) =
0, π1(U) = Z.

An alternative formulation starts with the fact that K(S2) = Z ⊕ Z. Then
the statement is that

K(X × S2) = K(X) ⊗ K(S2) = K(X) ⊕ K(X). (31)

Recall that the smash product X ∧ Y of based spaces is defined by collapsing
X × pt ∪ pt × Y to a point. Equation (31) implies that K̃(X ∧ S2) = K̃(X).
WE have Sn ∧ S2 = Sn+2 so

K̃(Sn+2) = K̃(Sn), (32)

which implies (30).
In this framework, the Bott map takes the form of a map

β : K(X) → K(X × S2),

different from the obvious map p∗ induced by projection p : X × S2 → X. To
define β, let H−1 → S2 be the tautological line bundle (dual of the hyperplane
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bundle H). Let b = q∗(1 − H−1) ∈ K(X × S2) where q : X × S2 → S2

is the projection. Then the Bott map is β(E) = bp∗(E). The family index
construction gives a way to define a map α : K(X × S2) → K(X) which will
turn out to be inverse to β. Then

α ⊕ ι∗ : K(X × S2) → K(X) ⊕ K(X)

is inverse to
β ⊕ p∗ : K(X) ⊕ K(X) → K(X × S2),

(where ι∗ is induced by the inclusion ι : X → X × S2) which establishes (31).
To define α, let V be a vector bundle over X × S2. Using a connection or

otherwise we can define a family of ∂-operators, so for each x ∈ X

∂x : Γ(Vx) → Ω0,1(Vx),

where Vx is the restriction of V to {x} × S2. Then we set

α(V ) = ind ∂x.

To see that αβ = 1 we can reduce to the case when X is a point. Then the
result follows from the fact that for the trivial bundle line over S2

ker∂ = C , coker∂ = 0,

while for the bundle H−1

ker∂ = 0 , coker∂ = 0.

Once we know that αβ = 1 there is a simple trick, using the formal properties
of the constructions, to show that βα = 1 (see [1]).

5.4 The index problem

Consider a general elliptic operator L : Γ(E) → Γ(F ) over a compact n-
manifold M . Let S(T ∗M) be the unit sphere bundle in T ∗M with projection
π : S(T ∗M) → M . The symbol of L defines an isomorphism

σ : π∗E → π∗F. (33)

Let p : ΣM → M be the Sn bundle over M defined by adding a point at
infinity to each fibre of T ∗M . Using σ as a clutching map, we define a bundle
WL → ΣM , isomorphic to E over the zero section and to F over the ∞ section.

We mention briefly the notion of a pseudo-differential operator over M .
Roughly speaking, these are defined as follows. Let B ⊂ M be a co-ordinate
neighbourhood. A pseudo differential operator P over M has the property that
if f is supported in B then:
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• Away from B, Pf is given by an integral operator

Pf(x) =
∫

G(x, y)f(y)dy.

• Over B there is a (matrix valued) function a(x, ξ) and Pf is given by

Pf(x) =
∫

a(x, ξ)f̂(ξ)eiξxdξ.

So when a is a polynomial in ξ this is just a differential operator. Using pseudo-
differential operators we can extend the whole discussion above to the case
when the symbol yields a general bundle isomorphism (33) and it follows from
the deformation invariance and other formal properties that the index of L
depends only on the class of Wσ in K(ΣM). In fact it is better to use “K-theory
with compact supports”. For a locally compact space Z one defines Kc(Z) =
K̃(Z+) where Z+ is the one point compactification of Z. Then Kc(T ∗M) can
be identified with the kernel of

K(ΣM) → K(M),

defined by restriction to the ∞-section. The index of L depends only on the
class of S(L) = WL − p∗F in Kc(T ∗M).

Remark A minor variant of the previous K-theory formulation of Bott pe-
riodicity is the statement that, for compact X,

Kc(X × R2) = K(X). (34)

Conclusion

The indices of elliptic operators over M define a homomorphism

ind : Kc(T
∗M) → Z

and the general “index problem” is to identify this (in a form amenable to
explicit calculation).

6 Dirac operators and the index formula

6.1 Spinors

For each m ≥ 1 we will construct a complex vector space Sm and a map γ :
R2m ⊗ Sm → Sm defined by complex linear maps γi : Sm → Sm. These maps
will have the property that

γiγj + γjγi = −2δij . (35)
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To do this we start with S1 = S+
1 ⊕ S−

1 with S±
1 = C and

γ1 =

(
0 −1
1 0

) (
0 i
i 0

)

. (36)

Inductively if we have constructed Sm we define Sm+1 = Sm⊗S1 with, schemat-
ically

γ̃ = γ ⊗ 1 ± 1 ⊗ γ.

These spaces and maps have the properties

• dim Sm = 2m

• with respect to the natural Hermitian metrics γ∗
i = −γi;

• Sm = S+
m ⊕ S−

m

• γi interchange S±.

Recall that the Lie algebra of SO(2m) can be identified with Λ2R2m. One
checks from (35) that the map

ei ∧ ej 7→
1
2
γiγj

is a Lie algebra homomorphism from Λ2 to End(S). This makes S a representa-
tion of the double cover Spin(2m) of SO(2m) and γ is a Spin(2m) equivariant
map. This representation is a sum S+ ⊕ S−.

The Dirac operator on R2m acts on S2m valued functions as

D =
∑

i

γi
∂

∂xi
.

From the algebraic properties above

• D is self-adjoint;

• D is the sum of D+ : Γ(S+) → Γ(S−)and D−(Γ(S−) → Γ(S+);

• D2 = Δ.

It is clear that D+ is an elliptic operator. In fact the map S2m−1 → U(2m−1)
defined by its symbol gives the generator of π2m−1(U).

Now let (M2m, g) be a compact oriented Riemannian manifold. There is an
SO(2m)- bundle of oriented orthnormal frames P → M . A spin structure on
M is a Spin(2m) bundle giving a double cover P̃ → M . Given a spin structure
we can form associated complex Hermitian vector bundles S = S+ ⊕ S− over
M . These come with a bundle map

γ : T ∗M ⊗ S → S. (37)
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The Levi-Civita connection induces a connection on P̃ and we have a covariant
derivative

∇ : Γ(S) → Γ(T ∗M ⊗ S).

The Dirac operator is the composite of this with (37). More generally, if E
is a complex vector bundle with a unitary connection over M there is a Dirac
operator coupled to E and in particular

D+
E : Γ(S+ ⊗ E) → Γ(S− ⊗ E).

For the rest of the course we consider the index of this operator which, by
general principles discussed above, is a topological invariant of (M,E, spin structure).

6.2 Characteristic classes and the index formula

Recall that a complex vector bundle E → M has Chern classes ci(E) ∈ H2i(M ;Z)
and a real vector bundle V has Pontrayagin classes pj(V ) = (1)jc2j(V ⊗ C) ∈
H4j(M ;Z).

The Chern character of E is a class in Heven(M ;Q) defined as follows. Take
formal variables λa. The expression

∑
a exp(λa) is symmetric in the λa and

so can be written as a power series in the elementary symmetric polynomials.
Then ch(E) is given by the same power series, substituting the Chern classes
for the elementary symmetric polynomials

∑
λa = c1

∑
λaλb = c2 . . . .

Thus

ch(E) = 1 + c1 + (
c2
1

2
− c2) +

1
6
(3c3 − 3c1c2 + c3

1) + . . .

A general result from algebraic topology is that the Chern character defines
an isomorphism K(M) ⊗ Q → Heven(M ;Q). The map E 7→ indD+

E induces a
homomorphism K(M) → Z and it follows from Poincare duality that there is a
class Â(M) ∈ Heven(M ;Q) such that

indD+
E = 〈ch(E)Â(M), [M ]〉 (38)

The class Â(M) is determined by the differentiable manifold M and a priori
the spin structure. The problem is to determine it. It is not surprising that it
is given by the Pontrayagin classes pj = pj(TM) = pj(M). In fact the formula
begins

Â = 1 −
1
24

p1 +

(
−4p2 + 7p2

1

5760

)

+ . . . .

Remark We saw above that an elliptic operator L defines an element
S(L) ∈ Kc(T ∗M). When M is a spin manifold there is a “Thom isomorphism”
K(M) → Kc(T ∗M) induced by E 7→ S(D+

E). In this sense, any elliptic opera-
tor is equivalent to a Dirac operator and the index formula for the D+

E gives a
formula for the index of any elliptic operator.
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The recipe for producing the class Â(M) in (38) goes as follows. In general,
let f(z) be any even power series with f(0) = 1. Take formal variables λa

and consider
∏

f(λa)2. This can be written as a power series in the elementary
symmetric functions of λ2

a. Then we get a power series in the Pontrayagin classes
by substituting these for the elementary symmetric functions of λ2

a. In our case
we want to take the power series

Â(z) =

(
z/2

sinh z/2

)1/2

(39)

which defines Â(M) = 1 − p1/24 + . . ..
The Chern-Weil construction represents ch(E) and Â(M) by expressions

in the curvature FA of the connection on E and the Riemann curvature R of
(M, g). We have

ch(E,A) = tr exp(iF/2π) Â(M, g) = detÂ (R/2π).

So the Index formula (38)—due to Atiyah and Singer—is

indD+
E =

∫

M

tr exp(iF/2π)det Â(R/2π). (40)

6.3 The heat equation approach

We digress with some generalities on parabolic differential equations. Let V →
M be some bundle with connection. Let Λ : Γ(V ) → Γ(V ) be a positive self-
adjoint operator equal to ∇∗∇ plus lower order terms. Then Q = (1 + Λ) is
invertible and its inverse is a compact self-adjoint operator from L2 to L2. From
functional analysis, we know that there is an orthonormal basis of eigenfunctions
of Q with eigenvalues tending to zero. These are eigenfunctions of Λ with
eigenvalues λ ≥ 0 tending to infinity:

Λφλ = λφλ.

For t > 0 we define an operator Ht = e−tΛ acting as e−λt on φλ. Our elliptic
estimates show that

• For fixed t, the operator Ht is bounded from L2 to L2
k, for all k.

• For all k, the Ht are uniformly bounded (independent of t) from L2
k to L2

k.

The first item implies that the operator is represented by a smooth kernel
Kt(x, y) ∈ Vx ⊗ V ∗

y as

Ht(f)(x) =
∫

M

Kt(x, y)f(y)dy.

The trace of Ht has two expressions giving the identity

∑

λ

e−λt =
∫

M

trKt(y, y)dy. (41)
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Recall that the heat kernel on R2m is

(4πt)−mexp(−r2/4t) (42)

One shows that there is an asymptotic expansion, for small t,

Kt(y, y) ∼ (4πt)−m(1 + θ1t + . . .) (43)

where θi = θi(y) ∈ Vy ⊗ V ∗
y . The series is produced by entirely algebraic

infinitesimal calculations and the proof that it does represent an asymptotic
series for Kt(x, x) uses the estimates above for the operators Ht.

For our application of this theory we consider the operator D2 on Γ(S ⊗E)
(dropping the bundle E from our notation). This is a sum

D2 = D2
+ + D2

−.

We define the “supertrace”

trsexp(−tD2) = trexp(−tD2
+) − trexp(−tD2

−).

The operator D+
E gives an isomorphism between the non-zero eigenspaces of

D2
+, D2

− so we have that for all t:

trsexp(−tD2) = indD+
E . (44)

Taking t → 0 we get

indD+
E = (4π)−m

∫

M

trs(θm(y))dy.

The local index theorem states:

Theorem 5

(4π)−mtrs(θm)dvolg =
(
tr exp(iF/2π) detÂ(R/2π)

)

2m

where ( )2m denotes the top-dimensional component.
Integrating, this implies (40).

7 Proof of the local index formula

7.1 Clifford algebras and the Lichnerowicz formula

If V is an oriented Euclidean vector space we define the Clifford algebra Cl(V )
to be the algebra generated by VC = V ⊗C subject to the relation v2 = −(v.v)1.
If ea is an orthonormal basis of V it is clear that Cl(V ) has a basis

1, ea, eaeb . . . (45)

For our purposes we take V to have even dimension 2m and we have a spin
space S = S+ ⊕ S−. The following facts are true
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• As vector spaces, there is a natural isomorphism Cl(V ) = Λ∗VC (as rep-
resentations of SO(V )).

• The map V ⊗ S → S induces an isomorphism γ : Cl(V ) → End(S)

• For E ∈ Cl(V )
trs(γ(E)) = (−2i)mEtop

where Etop is the component of E in Λ2mVC = C.

We will think of Cl(V ) as Λ∗V with a different product structure. The
Clifford product maps Λp ⊗ Λq to

Λp+q ⊕ . . . Λ|p−q|.

The top-dimensional component is the exterior product and the other compo-
nents are defined by combinations of contraction and exterior product.

One application of these ideas is to the Lichnerowicz formula. First consider
the case of the Dirac operator defined by a non-trivial connection A on a bundle
E over R2m. Then we have:

D2
E =

∑
∇i∇jγiγj

and [∇i,∇j ] = Fij . The “rough Laplacian” ∇∗
A∇A is −

∑
∇2

i and

D2
E = ∇∗

A∇A +
∑

Fijγiγj . (46)

For the case of a curved Riemannian base manifold (but trivial bundle E)
the differential geometry is a little more complicated but one gets

D2 = ∇∗∇ +
1
4

∑
Rijklγiγjγkγl (47)

To understand the curvature term we have to understand the element

R =
∑

Rijkleiejekel

in the Clifford algebra. This brings in the Bianchi identities for the curvature
tensor R. One of way of expressing these is that R is in the kernel of the wedge
product map s2Λ2 → Λ4. Now R clearly lies in the image of Λ2 ⊗Λ2 under the
Clifford product. This Clifford product has components

1. Λ2 ⊗ Λ2 → Λ4, the wedge product, which is symmetric.

2. Λ2 ⊗ Λ2 → Λ2, up to a factor this is the bracket on the Lie algebra of
SO(2m) and is antisymmetric.

3. Λ2 ⊗ Λ2 → Λ0, the inner product, which is symmetric.

We see then that the Bianhci identities imply that the first two components
vanish and R lies in Λ0. Up to a factor it is the scalar curavture S of the metric
and we get the Lichnerowicz formula

D2 = ∇∗∇ +
S

4
. (48)
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7.2 Local index formula 1, bundle curvature

We describe the proof by E. Getzler. Book references are [2], [3]. The main
ideas are to work in the Clifford algebra and exploit the grading.

As a first step in this direction, recall that at each point y ∈ M we have

θp ∈ End(Sy ⊗ Ey) = End(Sy) ⊗ End(Ey).

But we saw above that End(S) = Λ∗ and we can write θp =
∑

θp,q where
θp,q ∈ Λ2q ⊗ EndE. In particular the quantity we want to calculate is

trsθm = (−2i)mTrE(θm,m). (49)

It will transpire that

• θp,q = 0 for q > p;

• The terms θp,p can be found explicitly.

We consider ijn this subsection the case when the manifold M is flat but the
bundle E has a connection. The spin spaces for nearby points x, y can be
identified. Write Kt(x) = Kt(x, y) (with y fixed). Then Kt(x) ∈ Λ∗ ⊗E∗

y ⊗Ex.
Let D be the operator on sections of Λ∗ ⊗ E∗

y ⊗ E given by

D =
∑

ea∇a,

where ea acts by Clifford multiplication in Λ∗ and ∇a is the covariant derivative
on E. Then Kt is the solution of

(
∂

∂t
+ D2)K = 0,

which tends to the δ-function at y as t → 0. That is, for all σ supported near y
∫

Ktσ → Tr(σ(y))

as t → 0.
We now go back to the discussion at the beginning of the course on rescaling.

Let U be a vector space and consider U -valued functions on R2m (in fact on
small neighbourhoods of the origin). For ε > 0 we define an operator on such
functions by

mε(f)(x) = f(ε−1x).

Then our rescaling observation from Section 1 is that for a differential operator
L of order r:

εrm−1
ε Lmε → L0

as ε → 0, where L0 is the constant co-efficient operator given by the symbol of
L. If we change the definition of mε to

mεf(x) = εpf(ε−1x),

29



for some p, we would not change the conjugation m−1
ε Lmε. Suppose now that

U =
⊕

k≥0 Uk and define

Mε(f)(x) = εkf(ε−1x)

on sections of Uk. Conjugation by Mε acts in the same way as before on compo-
nents of L mapping sections of Uk sections of Uk but the components mapping
sections of Uk to sections of Uk+1 (for example) are scaled by an extra factor of
ε−1.

In our situation, choose a standard local trivialisation of the bundle E so
that the operator D can be thought of as acting on U -valued functions with

U = Λ∗ ⊗ End(Ey),

with grading from Λ∗. Define

Dε = εM−1
ε DMε.

Proposition 8 D2
ε → Δ0 + F̃ as ε → 0 where Δ0 is the Euclidean Laplace

operator and
F̃ =

∑
Fij(0)eiej

where eiej acts by exterior multiplication.

To see this we write
∑

−∇2
i = −

∑
∂2

i + η where η is a first order operator

η = −
∑

Ai∂i + ∂iAi + A2
i .

All these operators act on sections of U preserving the grading. We have

D2 = Δ0 + η +
∑

Fijeiej

where eiej acts by Clifford multiplication. When we do the rescaling D2
ε :

• Δ0 is preserved,

• η is scaled down by a factor of ε (or smaller),

• the components of Fijeiej mapping λk to Λk and Λk−2 are scaled by
factors of ε2, ε4 respectively

• the component of Fijeiej mapping Λk to Λk+2 is preserved (except that
the curvature F is evaluated at εx).

This proves Proposition 8.
Let Kε

t be the fundamental solution corresponding to D2
ε . One finds from

the definition that
Kε

t = ε2mM−1
ε Kε2t.
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Thus if
Kε

t (0) ∼ (4πt)−m(θε
0 + tθε

1 + . . .)

and we write θε
p =

∑
θε

pq as before then

θε
pq = ε2p−2qθpq.

So we can compute the θp using D2
ε for any ε and taking the limit as ε → 0 from

Δ0 + F̃ . Thus we have to compute the heat operator exp(−t(Δ0 + F̃ )). But F̃
commutes with Δ0 so this is

exp(−tΔ0) exp(−tF̃ ).

The expansion of the kernel at the origin is just

(4πt)−m(1 − tF̃ +
1
2!

t2F̃ 2 + . . .).

Finally taking the trace on the EndE component we get

TrEθmm =
1
m!

TrFm,

which gives the local index formula in this situation, using (49).

7.3 Local index formula 2, manifold curvature

Now we suppose that the bundle E = C is trivial but the manifold (M, g) is not
flat. The same strategy works but the differential geometry is more complicated.
We define D as before and we have to choose a local trivialisation of the spin
bundle to achieve our grading. We have

D2 = ∇∗∇ + S/4,

where S is the scalar curvature. The curvature term preserves the grading so is
scaled away and this time the interest comes from the term ∇∗∇. In a suitable
local frame one finds that

∇∗∇ = −
∑(

∂i +
1
4
Rijklekelxj

)2

+ LOT,

where LOT are lower order terms. We get D2 → P as ε → 0 where the model
operator P is

P = −
∑

i



∂i +
1
4

∑

j

Ωijxj





2

(50)

This is an operator acting on Λ∗ valued functions on R2m. The Ωij are 2-
forms Ωij = Rijklekel acting by exterior multiplication. Write Ω for the skew-
symmetric 2m × 2m matrix of 2-forms (Ωij). Also write B(z) for the function

B(z) =
z/2

tanh z/2
.
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Proposition 9 The heat kernel associated to P is

(4πt)−m det Â(tΩ) exp

(

−
1
4t
〈x,B(tΩ)x〉

)

. (51)

Putting x = 0, this implies the local index theorem.
The proof of the Proposition 9 is in principle a calculation. Simple observa-

tions reduce it to the case of the heat kernel associated to the harmonic oscillator
Schrodinger operator on R

−

(
d

dx

)2

+
a2x2

16
.

Mehler’s formula for this heat kernel is

(4πt)−1/2Â(at) exp(−
1
4t

B(at)x2).

8 Applications

8.1 The signature and Riemann-Roch formulae

If M is a Kähler manifold the Dirac operator can be interpreted in complex
geometry. A spin structure is a choice of square root K1/2 of the canonical line
bundle. One can identify S with the differential forms Ω0,∗(K1/2) and (up to a
factor) the Dirac operator with ∂ + ∂

∗
. More generally, if E is a holomorphic

vector bundle over M then

indD+
E = χ(E ⊗ K1/2),

where the right hand side is the alternating sum of the dimensions of the sheaf
cohomology groups. The Atiyah-Singer index formula becomes the Riemann-
Roch formula:

χ(E) = 〈ch(E)Td(M), [M ]〉 (52)

where Td(M) is the Todd class, which is a power series in the Chern classes
ci(M). This is defined by the function f(z) = z/1 − e−z. One takes the
product of f(λi) and substitutes the Chern classes for the elementary symmetric
functions:

Td(M) = 1 −
1
2
c1 +

1
12

(c2 + c2
1) + . . .

(The formula from Section 3 for Riemann surfaces is an example.)
If M has dimension 4k the signature τ(M) of M is the signature of the

cup-product form on H2k. We have a sequence of operators:

Ω0 → Ω1 . . . → Ω2k−1 → Ω+,

where Ω+ denotes the self-dual forms and the last operator is the projection of d.
Taking the corresponding “d+d∗” operator gives the Dirac operator on S⊗S+.
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By simple Hodge theory, the index is 1
2 (χ+ τ), where χ is the topological Euler

characteristic. Combining with the similar operator defined by the anti-delf
dual forms we get a signature operator Dsign of index τ . The general formula
gives the Hirzebruch signature formula

τ(M) = 〈L(M), [M ]〉

where L is the expression in the Pontrayagin classes defined like Â but using
the function (z/ tanh z)1/2. Thus

L(M) = 1 +
1
3
p1 +

7p2 − p2
1

45
+ . . . .

8.2 Scalar curvature in Riemannian geometry

If M is a spin manifold with scalar curvature S > 0 the Lichnerowicz formula
shows that the kernel of D is zero so ind D+ = 0.

• The quaternionic projective spaces are spin and have S > 0 so we see that
the top Â class must vanish (a relation between Pontrayagin numbers).

• The complex projective plane has S > 0 but p1 6= 0. This shows that the
spin condition is necessary.

• The argument can be extended to manifold such as the torus T 2m. Sup-
pose that there is a metric with S ≥ ε > 0. It is easy to see that for any
δ > 0 we can take a covering T̃ 2m → T 2m such that there is a degree
1 map Φ : T̃ → S2m with |dΦ| ≤ δ. Take a bundle E0 → S2m whose
Chern character in the top dimension is non-zero. Then we get a bundle
E = Φ∗(E0) over T̃ with connection having curvature |F | < Cδ. Taking δ
small enough we get |F | ≤ ε. Then the Lichnerowicz formula shows that
indD+

E = 0 which contradicts the index formula, so no such metric exists.
(The argument extends to show that any metric with S ≥ 0 is flat.)

8.3 Manifold topology

The right hand side of the index formula is a priori a rational number, so the
fact that it is an integer gives constraints on the Pontrayagin classes.

• Let M be a 4-dimensional spin manifold. The index of the Dirac operator
is p1/24 while the signature is p1/3 so we see that the signature is divis-
ible by 8. This follows in a more elementary way from the fact that the
quadratic form is even. But we can go further. The spin bundles S± can
be viewed as quaternionic bundles, so the kernel and cokernel are quater-
nionic and hence have even complex dimension. We get Rohlin’s Theorem,
that the signature of M is divisible by 16.

• An Enriques surface is the quotient of a K3 surface by a fixed point free
involution. It has even quadratic form of signature 8 but is not spin.
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• For any j equal to 2 modulo 4 we can construct a rank 4 real vector
bundle N → S4 with Euler class 1 and Pontrayagin class j. Let N0 be a
tubular neighbourhood of the zero section in N . The boundary of N0 is
a homotopy 7-sphere Σ. Suppose it is diffeomorphic to S7. Then we can
attach an 8-ball to get a closed manifold M with τ(M) = 1. The signature
formula gives

45 = 7p2 − j2,

which is clearly impossible if j2 6= 4 mod 7. (For example if j = 6.) So
we deduce that Σ is not diffeomorphic to S7. In fact it is homeomorphic
to S7 (Milnor’s exotic spheres.)

• We can couple the signature operator to a bundle E and we have

indDE
sign = 〈ch(E)L(M), [M ]〉.

It is a theorem of Sullivan that in dimensions > 4 any topological man-
ifold has a Lipschitz structure. Thus the transition functions between
charts have derivatives almost everywhere which are bounded, but not
necessarily continuous. So a tangent bundle does not exist but one can
define differential forms and Riemannian metrics etc. In the spirit of the
second part of Section 4 one can extend elliptic theory to work with these
non-smooth structures and in particular define the indices of coupled sig-
nature operators DE

sign. We can use these to define the L-class L(M) and
thence to define the Pontrayagin classes as rational classes. This gives a
proof of a famous theorem of Novikov on the topological invariance of the
rational Pontryagin classes.
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